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Synthesis of y-Acylmethylenetetronates from Squaric Acid
Masatomi Ohno, Yoshihiko Yamamoto, and Shoji Eguchi®

Institute of Applied Organic Chemistry, Faculty of Engineering,
Nagoya University, Chikusa, Nagoya 464, Japan

Abstract: Adducts obtained from the addition reaction of squaric acid ester chloride with a silyl enol ether were
converted thermally to the title compounds via consecutive ring opening, recyclization and dehydrochlorination.

A wide variety of compounds containing the 5-ylidene-2(5H)-furanone moiety are found in nature,!:2 and
some of these display useful biological properties (e.g. protoanemonin,? fimbrolide,3® basidalin3¢
agglomerin,3d and rubrolide3¢). Thus, synthetic methods to construct this ring system have drawn much
attention.24.56 Recently, the ring-opening reaction of cyclobutenones has emerged as a useful method for
elaboration of complex ring systems.” Thermal electrocyclic ring-opening takes place with high torquoselectivity
(e.g. outward rotation for an electron-donating 4-substituents)® to form a vinylketene, which then leads to the
products by a successive ring closure process. In the case of thermal reactions of 4-hydroxycyclobutenones, the
selective ring-opening suitably arranges 4-alkenyl (alkynyl) and allyl substituents in a cis-relationship with a
ketene group, which then allows further electrocyclization to phenols (quinone)?- and [2+2]cycloaddition to -
bicyclo[3.2.0]heptenones!?, respectively. We now wish to report another ring transformation of the 4-
hydroxycyclobutenone derivative with a 4-acylmethyl substituent leading to the title compounds.

The required structure is most easily accessible from squaric acid. Recently we reported the Lewis acid-
catalyzed addition reaction of squaric acid dichloride 1 and ester chloride 2 with unsaturated organosilanes 3 and
4to give 4-hydroxycyclobutenones 5-8 (Scheme 1).!! These products are promising for the ring-
transformation as described above.
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Moore demonstrated that the vinylketenes derived from 4-allylated squarates undergo facile intramolecular
[2+2]cycladdition to give bicyclo[3.2.0]beptenones.!0 In fact, our allylsilane-squaric acid chloride adducts
followed this type of reaction to afford the expected cycloadduct in a high yield, provided the 4-hydroxyl group
was protected by acetylation (Scheme 2). In this regard, the 4-acetoxycyclobutenone 9 derived from dichloride 2
was heated to reflux in xylene for 1 hto give 11 in 91% yield. Similarly, 10 derived from the ester chloride 3
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underwent the same rearrangement to 12 at relatively lower temperature (reflux in toluene).!2 The structures
were assigned on the basis of spectral data.!3 This reaction failed for the 4-hydroxy derivatives, i.e. 5 and 6.
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On the analogy of the conversion of 9 to 11, 4-acylmethyl-substituted cyclobutenones 7 and 8 derived
from the reaction of 1 and 2 with a silyl enol ether 4 were expected to give a cyclopentane-fused f-lactone 13 (or
its decarboxylated product).!4 Interestingly, the reaction took a different course. The rearrangement of 4-
phenacyl-substituted cyclobutenone 7 occurred smoothly at reflux temperature in benzene for 2 h, and the product
was separated by silica gel column chromatography in 37% yield. On the basis of its spectral data, the strucure
was assigned as y-phenacylidenefuranone 14 rather than a §-lactone (Scheme 3). The mass spectral and
elemental analyses indicated loss of HCI from the molecule, and the IR absorptions at 1795 and 1661 cm-1
suggested the existence of a furanone moiety. !3C NMR signals appeared all at lower field (8¢ 106.3, 128.7,
129.3, 132.0, 134.3, 136.6, 138.1, 157.8, 163.4 and 189.3), showing all the carbons to be sp2 hybridized.
Particularly the 1H NMR spectrum revealed that two vinylic protons (3y 7.03 and 8.36) had a long-range
coupling of J=0.6 Hz. The observed spectral patterns were closely related to those reported for a y-
methylenefuranone and supported Z-geometry of a benzoyl group by the long-range coupling.!5 In the same
manner the methoxy-substituted analog 8a produced y-phenacylidenetetronate 15a upon heating in xylene for 2
h. Again the spectral data of the product were consistent with the tetronate structure.!6 In this case the yield was
low (15%), probably because the liberated HCl damaged the product. To this end, the reaction was carried out in
the presence of a base; pyridine was more effective than 4-dimethylaminopyridine, triethylamine and N,N-
diethylaniline and the yield was raised to 64%. The other y-acylmethylenetetronate 15b-15f were thus obtained
in 54-63% yield under these conditions from 1,2-addition products 8b-f starting from ester chloride 3 and sily!
enol ethers of alkyl, alkenyl and aryl ketones 4b-4f (Table). This ring transformation was also applicable to a
ketene silyl acetal 4g (entry 7).

=Ct“*-1¢» oy

7 x-CI.R_Ph 14 X=C1, R=Ph
8 X=OMe 15 X=OMe
Scheme 3

Scheme 4 illustrates the plausible mechanism for the stereospecific formation of the tetronates 18. The 1,2-
addition product 8 undergoes thermally allowed electrocylic ring-opening to give an enol ketene 16. Although
the hydroxyl group may be oriented outwardly as a result of the torquoselective ring-opening, favorable
isomerization of the enol moiety can occur via a 1 3-diketone 17 and recyclization to a y-lactone 19. Subsequent
dehydrochlorination affords the tetronate 18. The observed Z-geometry of the y-methylene group of 15 is
attributable to the hydrogen-bonded enol form 18 of the 1,3-diketone 17. Thermolysis of trimethisilyl-protected
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derivative of 8a resulted in only decomposition of the starting materials, probably because of fixation of the enol
form. The other mechanism involves the opposite way of ring-opening; the hydroxyl group may be oriented
inwardly with a less favored but kinetically competitive process. The following lactonization and stereospecific
dehydrochlorination leads to thermodynamically more stable Z-isomer (8 — 20.-—~ 21 — 185).
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Table Formation of Tetronate 15 from Ester Chloride 2 and Silyl Enol Ether 4

entry R 4 8 (Yield%)"  15(Yield%)° mp(°C)
1 Ph 4a 8a (80) 15a(64)  159-162
2 CHs 4 8b (72) 15b (56)  80-83
3 CH3(CH,),- ac 8c (61) 15¢ (63) oil
4 @\ ad ed (45) 15d (61) 7478
5 >___\ 4e 8e(73) 15e (1)  77-80
6 s _Q_ at 81(82) 15t (54)  131-133
7 PhO 4g 8g(83) 15g (37) 136139

a) General Procedure: The reaction was carried out at -15°C in the same manner as described in ref. 11b.
b) General Procedure: A solution of 8 (0.03 M) and pyridine (1.1 eq.) in dry xylene was refluxed for 2 h. The

solvent was evaporated and the residue was chromatographed on a silica gel column (hexane/ethyl acetate 3:1)

1o give the tetronate 18.
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In conclusion, a novel transformation of squaric acid ester chlorides to y-acylmethylenetetronates was
developed in which an acyl group was introduced stereospecifically (Z-geometry). This merit of preparation
overcomes the non-stereoselective condensation reaction of maleic anhydride with an ylide.6-f The present
method seems to be potentially useful for the synthesis of bioactive compounds having a butenolide structure.
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