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Ab~brzcti Adducts obtained from the addition reaction of squaric acid ester chloride with a silyl enol ether were 
converted thetmally to the tide canpounda via consecutive ring opening, mcyclization and dehydmchlorination. 

A wide variety of compounds containing the 5ylidene-2(H)-furanone moiety are found in nature,lz and 

some of these display useful biological properties (e.g. protoanemonin,“a fimbrolide,3b basidalit@ 

agglomerin,3d and rubrolide’e). Thus, synthetic methods to construct this ring system have drawn much 

attention.2*45,6 Recently, the ring-opening reaction of cyclobutenones has emerged as a useful method for 

elaboration of complex ring systems.7 Thermal electrocyclic ring-opening takes place with high toquoselectivity 

(e.g. outward rotation for an electron-donating 4substituents)g to form a vinylketene, which then leads to the 

products by a successive ring closure process. In the case of thermal reactions of 4hydmxycyclobutenones, the 

selective ring-opening suitably arranges 4alkenyl (alkynyl) and ally1 substituents in a cis-relationship with a 

ketene group, which then allows further electrocyclization to phenols (quinone)7.9 and [Z+Z]cycloaddition to 

bicyclo[3.2.0]heptenonestu, respectively. We now wish to report another ring transformation of the 4 

hydroxycyclobutenone derivative with a rlacylmethyl substituent leading to the title compounds. 

The required structure is most easily accessible from squaric acid. Recently we reported the Lewis acid- 

catalyzed addition reaction of squaric acid dichloride 1 and ester chloride 2 with unsaturated organosilanes 3 and 

4 to give 4hydroxycyclobutenones 5-g (Scheme 1). tr These products are promising for the ring- 

transformation as described above. 
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-1 ?c(X=oMe) Y 

1 x=cl 3 Y=cH, 5 x=u,Y=cl+, R=H 
2 x=oMe 4Y=o 6 X=O&,Y=C~, R=H 

scheme1 
7 X=a,Y=o. R=Ftl 
8 X=oMe.Y=o 

Moore demonstrated that the vinylketenes derived from 4allylated squarates undergo facile ie 

[2+2]cycladdition to give bicyclo[3.2.0lheptenones. to In fact, our allylsilane-squaric acid chloride adducts 

followed this type of reaction to afford the expected cycloadduct in a high yield, provided the 4hydroxyl group 

was pmtected by acetylation (Scheme 2). In this regard, the 4acetoxycyclobutenone 9 derived from dichloride 2 

was heated to reflux in xylene for 1 h to give 11 in 91% yield. Similarly, 10 derived from the ester chloride 3 
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underwent the same rearrangement to 12 at relatively lower temperature (reflux in toluene).tz The structures 

were assigned on the basis of spectral data.13 This reaction failed for the 4-hydmxy derivatives, i.e. 5 and 6. 

On the analogy of the conversion of 9 to 11, 4acylmethyLsubstituted cyclobutenones 7 and 8 derived 

from the reaction of 1 and 2 with a silyl enol ether 4 were expected to give a cyclopentane-fused g-lactone 13 (or 

its decarboxylated product).ta Interestingly, the reaction took a different course. The rearrangement of 4 

phenacyl-substituted cyclobutenone 7 occurred smoothly at reflux temperature in benzene for 2 h, and the product 

was separated by silica gel column chromatography in 37% yield. On the basis of its spectral data, the strucure 

was assigned as y-phenacylidenefuranone 14 rather than a @lactone (Scheme 3). The mass spectral and 

elemental analyses indicated loss of HCI from the molecule, and the IR absorptions at 1795 and 1661 cm-* 

suggested the existence of a furanone moiety. 13C NMR signals appeared all at lower field (& 106.3, 128.7, 

129.3, 132.0, 134.3, 136.6, 138.1, 157.8. 163.4 and 189.3). showing all the carbons to be sp’ hybridized. 

Particularly the tH NMR spectrum revealed that two vinylic protons (a, 7.03 and 8.36) had a long-range 

coupling of 5=0.6 Hz. The observed spectral patterns were closely related to those reported for a y- 

methylenefuranone and supported Z-geometry of a benzoyl group by the long-range coupling.15 In the same 

manner the methoxy-substituted analog & produced y-phenacylidenetetronate 15a upon heating in xylene for 2 

h. Again the spectral data of the product were consistent with the tetronate ~tructure.~~ In this case the yield was 

low (IS%), probably because the liberated HCI damaged the product. To this end, the reaction was carried out in 

the presence of a base; pyridine was more effective than 4dimethylaminopyridine. triethyhunine and N,N- 

diethylaniline and the yield was raised to 64%. The other y-acylmethylenetetronate 15b-15f were thus obtained 

in 5463% yield under these conditions from 1,2-addition products Sb-f starting from ester chloride 3 and silyl 

enol ethers of alkyl, alkenyl and aryl ketones 4b4f(Table). This ring transformation was also applicable to a 

ketene silyl acetal 4g (entry 7). 

ia 7 X=Cl,R=Ph 
8 x=oMe 

scheme3 

14 X=Ci,RPh 
15x=0!& 

Scheme 4 illustrates the plausible mechanism for the stereospecific formation of the tetronates 15. The 1.Z 

addition product 8 undergoes thermally allowed electrocylic ring-opening to give an enol ketene 16. Although 

the hydroxyl group may be oriented outwardly as a result of the torquoselective ring-opening, favorable 

isomerization of the enol moiety can occur via a 1,3-diketone 17 and recyclization to a y-lactone 19. Subsequent 

dehydrochlorination affords the tetronate 15. The observed Z-geometry of the y-methylene group of 15 is 

attributable to the hydmgen-bonded enol form 1% of the I$-diketone 17. Thermolysis of trimethlsilyl-protected 



derivative of& resulted in only decomposition of the startiog mate+ls. probably hecause of fixation of the end 

form. The other mezwsm involves the opposite way of ring-opening; the hydroxyl group may be oriented 

inwardly with a less favored but kinetically competitive process. The following lactonizatkm and sterexqecif~ 

dehydrochlorioatioo leads to thermodynamically more stable Zisomer (8 + 28. * 2t+ 15). 

Table Formation of Tetronate 15 from Ester Chloride 2 and Silyl En01 Ether 4 

entry R 

1 Ph 

2 W 

4 8 (Yiid %)a 15 (Yield %)b mP K) 

4a 8a W) lJa (64) 159162 

4b 8b (72) 15b(56) 8033 

3 CH,(CW,- 4c 8~ (61) 15c (63) oil 

4 4d 6d (45) 15d (61) 74-76 

5 4e 86(73) l!ie (61) 77-60 

6 8f(62) 1% (54) 131-133 

7 PhO 49 SSW) 1% (37) 136-139 

a) General procedure: The reaction was carried out at - lS*C in the same manner as described in ref. I lb. 
b) General Pmcedure: A soiution of 8 (0.03 M) and pyridine ( 1. I eq.) in dry nylene was 14used for 3 h. The 

solvent was evapotated and the residue was chmmampphed on a silica gel column (bexa&ethyl acetate 3: 1) 
to give the tetronate 15. 
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In conclusion, a novel transformation of squaric acid ester chlorides to y-acylmethylenetetronates was 

developed in which an acyl group was introduced stereospecifically (Z-geometry). This merit of preparation 

overcomes the non-stereoselective condensation reaction of maleic anhydride with an ylide.a-f The present 

method seems to be potentially useful for the synthesis of bioactive compounds having a butenolide structum 
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